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!. INTRODUCTION

We consider in this paper relations between weak and strong convergence
of iterates of positive contractions in lo 1) spaces, I < P < 00. A matrix of
real numbers (arti)n.i~l,3.... is called uniformly regular if the following
conditions hold:

sup I I ani I
n

lim max i G ni
n I

0; lim I Gille I. (1.1)
n .

1

G. G. Lorentz characterized the class of uniformly regular methods in
terms of "summability functions" (see [9 and 10]). Here we study the problem
of equivalence of the following two conditions (A) and (B):

(A) Tn converges weakly in L p ;

(B) LI an;T' converges strongly III L p for every uniformly regular
matrix (ani)'

The implication (B) => (A) is easy, and in fact, as observed in [7], (A) is
implied in arbitrary Banach spaces by a condition in appearance weaker
than (B), namely the existence of a regular matrix (ani) such that L; an;Tk i

converges weakly for every strictly increasing sequence of positive integers
(k;). In Section 2 of the present paper we show that (A) implies (B) if Tis
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CONVERGENCE OF POSITIVE CONTRACTIONS 349

a positive invertible isometry and the weak limit T of T" is zero. Section 3
proves the same result in the case when T is not zero. In Section 5 an attempt
is made to extend the implication (A) => (B) to positive contractions. An
additional condition is needed: that there exists a function h in L p such that
h > 0 a.e. and 11Th 11 = I: h II. Under the same condition it is at first shown
in Sections 4 and 5 that a contraction Ton L p has a dilation to an isometry,
and this isometry generates the decomposition of the space X into two
invariant parts, Xl and X 2 : On Xl the theorem holds because the isometry
is invertible; on X 2 because this part is a disjoint union of images of a
"wandering" set.

The question whether (A) implies (B) for general positive contractions
remains open. l For p 1 and 2, however, the answer is yes, and the implica-
tion (A) => (B) holds even if T is not positive (cf. [5 and 7]).

2. CONVERGENCE OF INVERTIBLE ISOMETRIES TO ZERO

Let (X, l:, m) be a a-finite measure space and let L p = Lp(X, .r, m) be
the usual Banach spaces. In the proofs, we assume without loss of generality
that m(X) = I : L p of a a-finite measure space is isometric and lattice
isomorphic to L p of a probability space. If EEl:, then Lp(E, m) or Lp(E)
denotes the subspace of L p consisting of functions with support in E.
A contraction Ton L p is a linear operator on L p of norm ~1. Lv~ is the
cone of nonnegative elements of Lv. Since L p is actually composed of
equivalence classes of functions, many statements below are to be understood
modulo sets of m-measure zero, or modulo m-null functions.

The inner product ff .g dm is denoted (f, g). If p is a number between I
and 00, p' denotes p!(p -- I).

LEMMA 2.1. Assume p > 1. Let f E L p +. The unique element of Lt.
satisfying the equation in g

(g, f) = lifl!p II g Ilv' = Ilfil~,

is the fimction g = /p-l.

Prool /P-l satisfies the equation. The equality in Holder's inequality
(f, g) ,;; I!fllv II g lip' determines g up to a mUltiplicative constant, which
must be I because of the second equality in the equation.

1 Added in proof: The answer is yes. (See a research announcement by the present
authors in Bull. Amer. Math. Soc., January 1975.)



350 AKCOGLU AND SUCHESTON

LEMMA 2.2. If T is an invertible isometry on L,), I < P < 00, then T*
is an isometry on L p' .

Proof Given hELp' with ,I Ii I, choose g E L p so that I: h = (h, g) cc

[I g I· Let f be such that Tf g. Then (h, Tf) I, Tl!1 = III:!. Also,
(Ii, Tf) = (T*h,j) :« !I T*h I Thus I: T*h II I, hence II T*h Ii = 1 = [I II II.

LEMMA 2.3. If T is an invertible isometry on L p , then for each f E L p+,
T*fP-l = (T-y)p·-l.

Proof By Lemma 2.1, (T-ljy-l is the unique element of L p ' satisfying
the equation in g

(T-Y, g) =c II T-Ill! II g II g II c=

Because of Lemma 2.2, this equation is also satisfied by g = T*f p-l. Hence
(T-y)P-I = T*f fI-l.

LEMMA 2.4. Let 1 :« PI :« q ~:.; P2 :« 00. Then for each f E L p2 one has

Proof Assume at first that P2 < 00. Set fJ ~~ P2 >< (q
t = (P2 - PI)/(P2 .- q), t' =~ t/U - 1). Then 1X + fJ = q, ext
Holder's inequality implies that

PI)/(P2 - PI),
PI , fJt' = P2 .

ri,t'li/llt'

(2.5)

The case P2 00 is obtained by passing to the limit in the inequality of the
lemma (cf., e.g., Loeve [8, p. 160]).

Since the limit in the following theorem is zero, a condition on the matrix
weaker than uniform regularity is sufficient, namely

sup I I ani I < 00
n

and lim max I ani I == O.
n I

(2.6)

THEOREM 2.7. Let T be a positive invertible isometry on L p where P is
afixed number, 1 < P < 00. Thefollowing conditions (ex) and (fJ) are equivalent.
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(0:) Til converges weakly to zero; (f3) Li aniTi converges strongly to zero for
each matrix (anJ satisfying (2.6).

Proof As observed in the introduction, it suffices to prove that (IX)
implies (f3). Assume (IX). Write Sn for the operator Li aniTi. We prove that
II Snfj~ =~ ((Snf)P-\ SrJ) ->- O. By Lemma 2.3, T*i(Snf)Ji-1 = (T-iSn!)lJ-1 =
(S" T-if) Ji-1. Hence it suffices to show that for each f E L p +

(2.8)

Since LX) is a dense subspace of L p and T is bounded, we may, and do,
assume that the function / is bounded by 1. Instead of (2.8) we will prove
the stronger statement

(' )1'-1
~ an; f ~ ani P - i! dm -+ O.

We require the following lemma.

(2.9)

LEMMA 2.10. Let (d;;) be a matrix 0/ real numbers bounded by I and such
that limlHI~oo dij = O. Let (ani) satisfy (2.6). Then/or each real number q > 0

I I ani I(I I ani: d,;Y ->- O.
)1- I

Proof Set SUPn Li : ani I = m. Let E > 0 be given and choose K so
large that I i - j I > K implies I di; I < E. Select N so large that for n > N
one has maXi I ani I < E. For each positive integer j there are at most 2K + 1
terms dij such that Idij I < E need not hold. Thus for n > N we can write,
using the convention that ani = 0 for i :s;; 0,

HK

I I ani I dii:S;; I I ani I . 1 + E I I an' I :s;; (2K + I + m) . E,
i~j-K

hence

which proves the lemma, since E is arbitrary.
We continue the proof of the theorem.
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Case p < 2. One has for each g E L~l (cf. Loeve [8, p. 156])

Jgdm.

hence the expression in (2.9) is bounded by

\
. .JJ' lI ' ani i I I ani i UFijdm)

I _ l

(2.9) now follows from Lemma 2. ]0 applied with dji c= f Ti--if dm and
q = p - 1, because weak convergence to zero of T'f in Lv implies that
f rnfdm-+O.

Case p 2. Minkowski's inequality is now available in L 1H , which
implies that instead of (2.9) it suffices to prove

r J1'-1
~ I ani i L~ ;ani l : Ti-Ir'p-l-~ O. (2.11)

Observe that Ii T- rfllp_l-> 0 because (T-nj)I'-1 = T*''f 1'-1 and weak
convergence to zero of Tn in L n implies weak convergence to zero of T*n
in Lv' . Also!1 rnfllv-I converges to zero, because Lemma 2.4 may be applied
with PI == J, P2 = p, q= p - J. This proves that

(2.12)

(2.11) will now be a consequence of the Lemma 2.10 applied with
dii = II P-ifllv_l and q = p --- 1.

3. CONVERGENCE OF ISOMETRIES TO A POSITIVE LIMIT

We now require a decomposition of the space X such that on one part
of the space the weak limit is zero, and on the other part there is a positive
fixed point.

PROPOSITION 3.1. Let T be a positive, linear operator on Lv, 1 p < 00.

Then X uniquely decomposes into two sets F and G with the following proper
ties. G is the support of a T-invariant nonnegative function go , and the support
of any such function is contained in G. G is invariant; i.e., f E Lp(G) implies
Tf E L,,(G). Ifi E Lv+ and Pi converges weakly, then fF Pidm -+ O.
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Proof Let Q = {g: g EO L p +, Tg = g}, G = UYEQ supp g. Define a func
tion go E L p + as follows. If G = 0, set go = 0. Otherwise there is a countable
sequence of nonnull functions gi in Q so that G = Ui supp gi. Set
go = Li Ciigi where Cii are positive constants so chosen that go E lop . Then
G = supp go and go E Q. The set G is invariant, because, given f E lop+ and
an E > 0, we can set I = II +j~, where Ilfl II < E, and there is a positive
constant c such that I2 < ego, hence cgo ~ TI2 E L p +. Define an operator R
on Lp(F) by Rf = IF(Tf), IE LiF). Clearly Rn(lpj) = IFTn..! for all n. If
weak-lim Tn..! = J~ then TJ = J, hence supp IC G, and limn IF TnI dm =

IFJdm =~ o. 0

COROLLARY 3.2. IfP > 1 and T satisfies

and
Tn

- -+ 0 strongly,
n

then for each f E L p

Proof The mean ergodic theorem applied to R in LvCF) gives that the
Cesaro averages of Rn..! converge to a function J E Lp(F). RJ = I, hence
TI =.1, suPpJc G andl = o.

A bounded linear operator T is called invertible if it is one-to-one and
onto. The inverse T-l is then a bounded linear operator by a well known
theorem of Banach, and T-l is positive if T is positive. In some cases the
decomposition X = F + G is more satisfying in that not only G, but also
F is invariant, so that the separation between the two sets is complete.

COROLLARY 3.3. If T is invertible, then both F and G are invariant.

Proof T and T-l have the same decomposition F + G, because they
have the same fixed points, since Tg == g implies g = T-l(Tg) 0= T-lg. Let
Tf = II + gl with II E Lp(F), gl E Lp(G). Then T-lgl E Lp(G), hence
f .c= T-l(fl + gl) = T-lfI, Tf =fl and gl = o.

PROPOSITION 3.4. If T is a positive contraction on L p , I < p < 00, and
Tf = IE L p +, then both E = suppI and Eo are invariant.

Proof Assume IIIllp = 1. Then 1 = U;jP-l) = (Tf,jJ'-l) = (f, T*fH) ~
II T*jJ'-l I!. On the other hand II T*jP-l II ~ II T* III! f p-l II oS; l. Thus
II T*f ['-I II == 1 = 11f1'-l il. This implies that T*jP-l is a solution of the
equation in g appearing in Lemma 2.1. Hence T*fJi-l = f1'-l. The set E is



354 AKCOGLU AND SUCHESTON

contraction on L p , I P < 7~. if
o a.e. and Th h, then the condi-

the support of a T-invariant function f; hence is T-invariant (d. the proof
of invariance of Gin 3.1), and E is also the support of a T*-invariant function
l P-\ hence E is T*-invariant. It follows that P is T invariant. To see this,
let fl E Lp(P), f2 E Lp'(E), and note that (Tfl ,f~) 0 if and only if
(.fI , T*f2) O~ O.

COROLLARY 3.5. If' T is a positive contraction on L p , I P < ex, then
the sets F and G appearing in Proposition 3.1 are both invariant.

Either 3.3 or 3.5 may be used to show that the problem of equivalence
of (A) and (8) for invertible isometries may be studied separately on the
parts F and G of the space. Section 2 resolves this problem for the part F.
For the part G. the following theorem proved in ([7, Section 2]) is applicable:

THEOREM 3.6. Let T be a positive
there is a function h E L" such that h
tions (A) and (8) are equivalent.

We only very briefly sketch the proof; for details see [7]. Define a measure
y on E by dy hi'dm. Define an operator S on Lp(X, y) by hSf T(h1) ,
then hP-IS*f T*(h J'-I1). One verifies that S is a contraction on Lp(X, y),
and both Sand S* are contractions on L,,(X, y), hence S is also a contraction
on LI(X, y). It follows that S is a contraction on L 2(X, y), and on L 2 the
equivalence of (A) and (8) is rather easy to prove. From the validity of the
equivalence for S one derives the validity for T, hence the theorem.

(2.7), (3.5) and (3.6) now imply:

THEOREM 3.7. The conditions (A) and (B) are equivalent for arbitrary
invertible isometries 011 L 1), I < P < 00.

4. DILATIONS OF CONTRACTIONS IN Lp-SPACES

In this section we will prove Theorem 4.1 below, which will be used in the
next section. Similar theorems were obtained in [2] and [3], for the finite
dimensional Lp-Spaces and for the LcSpaces, respectively.

Before we state this main result, we recall the following definitions and
theorems. An equivalence between two measurable spaces is an invertible
point transformation which is measurable in both directions. An isomorphism
between two measure spaces is a measure preserving point transformation
that becomes an equivalence if a null set is omitted from each one of the
spaces. A Borel space is any measure space that is isomorphic to (J, f3, flo),

where J = [0, 1] is the unit interval, f3 is the a-algebra of its Borel sets and flo
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is a finite measure. If 4>: J -+ J is an isomorphism between (J, fl, JL) and
(J, fl, v) then there is also a measure preserving equivalence f: J -+ Jbetween
these measure spaces. In what follows (Ji, fl.J, i = 0, ±l, ±2,... , will
denote copies of (J, fl) and we will let (Jkl, flk l) = TI~=k (Ji , fli),
- 00 :c;; k ::;; I :c;; 00. Note that (Jkl, fl/}) is always equivalent to (J, fl)·

A nonsingular equivalence T of a measure space (X, J:, m) is an equivalence
that transports m to an measure mT-1 absolutely continuous with respect
to m. A nonsingular equivalence T of (X, J:, m) induces a positive isometry Q
of LiX, J:, m), defined as

[
dmT-1 ]l/P

(Qf)(x) = ~ (x) f(r1x).

THEOREM 4.1. Let T be a positive contraction of L p(J, fl, fL), where fL is
a normalized measure and I < p < 00. Assume that there is a function
hE LiJ, fl, fL) so that h > °a.e. and II Th II = II h II. Then there exists another
normalized measure fi on fl and a non singular equivalence T of(J, fl, p,) so that

(i) There is a sub a-algebra'?l efland a positivity preserving isomorphism
t: LiJ, fl, fL) -+ Lp(J, '?l, p,),

(ii) If Q is the positive isometry of Lp(J, fl, p,) induced by T and if

is the conditional expectation operator with respect to '?l, then tPf c= EQngf
for each f E Lp(J, fl, JL) and for each 11 == 0, I, 2,....

The proof will depend on several lemmas. In this proof the measure fi
will actually be constructed as a measure fL"'.w on the cartesian product space
(J:::w , fl"'.w)' Similarly, T will be a nonsingular equivalence of (J~w , fl:~w , fL"'.w)
and 0' = flo C fl':'.", will be the sub a-algebra of fl"'.", generated by the Jo
coordinate function J:::X> -+ Jo. Since (J:::w , fl~,,J is equivalent to (J, fl), the
formulation given in the theorem may then be obtained easily.

The measure fL':'.", will be constructed in such a way that its projection on
the coordinate space (Jo , flo) will be fL. Hence the isomorphism gwill amount
to identifying a function on J as a function on J~w that depends only on the
Jo-coordinate.

DEFINITION 4.2. Let (X, ,5W) and (Y, 0') be two measurable spaces and
let fry} = {7)Jx be a family of normalized measures on (Y, 0'), indexed by the
elements of X. Then {7)} is called a conditioned family if the values of these
measures at each G E 0' define a measurable function on (X, ff). :If a is a
measure on (X, ff) and {7)Jx is a conditioned family of measures on (Y, 0')
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then 0 x {1)} will denote the measure on (X, ,~) ;< (Y, :§) defined uniquely
by the condition that

(0 X {TJ})(F G) r TJ(G, x) p.,(dx),
, F

for each FE § and G E ,§, Here TJc, x): '!J ~ [0, 1] is the member of {1]}
corresponding to x E X.

LEMMA 43. There exist a conditioned family {ex}]. on (J_1 , f3-1) and an
equivalence 1T: (J~l , f3~1) ~ (Jol, (301) so that 1T transports {ex] p., to v ",
where dp., = hv dm, dv = (Th)P dm and where .\ is the standard Lebesgue
measure, so that

for each f E LiJ, f3, m). Here 1To\XO ' Xl) denotes the Jo-coordinate of the
point 1T-1(XO, Xl) E J~l .

Proof Let Sn= {O, I}" be the set of all sequences of length n of zeros
and ones and let S = U:=l Sn be the set of all such finite sequences. For
each s E S, let j s be the corresponding binary interval of J = [0, 1], consisting
of the numbers whose binary expansions start with the sequence s. We will
assume that the end points of these intervals are so adjusted that for each
n ;:;>- 1 the family USLES

n
is a partition of J and that these partitions get finer

as n increases. Let X, be the characteristic function of j s •

For each s E S, we are now going to define a subset Gs of Jo1 so that the
following conditions will be satisfied

4.4. For each n ;:;>- 1, {GS}SES is a partition of J01 and these partitions
get finer as n increases. . n

4.5. If s, s' E S' and if s' is an extension of s then Gs' C Gs .

4.6. If if;s is the characteristic function of G S then

In - a.a. X o E Jo .

To define G';s, let Ps(xo) ~~ (T(Xsh)(xo))j(Th(xo)). We may assume that
these functions are so adjusted that the following countably many conditions
are satisfied at each point.

Po + PI = I,

Pso + PsI = Ps, s E S,
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where sO and sl denote the extensions of s by a 0 or by a 1, respectively.
We may then let, for example,

Go = {(xo , Xl) I 0 ~ Xo ~ 1, 0 ~ Xl < Po(Xo)},

Gl ~= {(Xo , Xl) I 0 ~ Xo ~ 1, Po(Xo) ~ Xl :::-;; 1}

and continue the definition of G;s by an obvious induction.
These sets define a function g: JOI -+ J as follows. For each (Xo , Xl) E Jo1,

g(xo , Xl) is the real number whose binary expansion is given by the indices
of Gs's that contain this point. Then g transports v X A to JL. In fact, for
each binary intervaljs C J,

, TXh
(v X A)(g-ljs) = (v X '\)(G s) = J Tit (Th)P dm

Jo

r (TXsh)(Th)P-l dm = JXshT*(Th)P-l dm
.~ ~

Therefore, by Rohlin's theorem [12, l], there exists a conditioned family
{ex}] on (1-1 ,f3-l) and an equivalence

o

so that 7T transports {ex} X JL to v X Aand so that g7T: J~l -+ Jo is the projec
tion of J~l to its Jo-component, {ex} X JL - a.e.

To see that

for each f E Lp(J, f3, m), we observe that this equation is true iff = Xsh, by
the definition of 7T. Hence it is also true for any f = <ph, with <p E L1,(J, f3, JL),
which includes allfE Lp(J, f3, m).

4.7. We will now construct an equivalence T: J~oo -+ J~oo as follows.
If Xi and TinX denote the ith coordinates of x E J~oo and TnX E J"!.oo , respec
tively, then

TOX = 7TO(X_l , xo),

TlX = 7Tl(X_l , xo),

if i 0/= 0, i 0/= 1,
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where (X-I' X o) ->- (170(X_1 ,XO), 171(X~1' x o» denotes the equivalence
17: J~l -+ J 01 as constructed above. We will define two measures (see [3] for
further details)

and

where dfL = hP dm, dv = (Th)1J dm are measures on (Jo , {30), as before, and
A is the standard Lebesgue measure, and for each n = I, 2, ... , {CC n};-n+l

is a conditioned family on (I n , f3~n) defined as follows: 0

where {ex} is the conditioned family obtained previously.
Then one can check that T transports fL"'-YJ to Ve'l)oc and also that

If Q is the positive isometry induced on Lp(J"-j", , f3'."oc , fL'.""J by T, then

for each FE Lp(J",YJ , {3'."", , fL"'oo) and x Eroc , XoE Jo being the Jo-coordinate
of x.

Each ¢ E Lp(J, {3, fL) can also be considered as a member of
Lp(J",,,, , f3~", ,fL':'.",), depending only on the Jo-coordinate X o of a point
x E J",oo . Then ¢h E Lp(J, {3, m), and we would like to show that

for each n = 0, 1,2,... , and for each ¢ E Lp(J, {3, fL), or equivalently, that

for each n = 0, 1,2,...

and for each f E Lp(J, {3, m), where E: Lp(J",oc , f3'."00 , fL'."YJ) -+ Lp(J, {3, fL) is
the conditional expectation operator with respect to {30 C {3'."w , the a-algebra
generated by the Jo-coordinates.

The proof is by induction and essentially depends on the following lemma.

LEMMA 4.8. Let FE Lp(J",oo , {3'."w ,fL"'oo) be a function depending only on
finitely many coordinates (xo , Xl'"'' X n ), n:? O. Then EQF = EQEF =

(llh) ThEF.
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Proof Write the value of F at ( , X_I' Xu , Xl'''') as F(xo ,•••, x n).

Observing that QF depends only on (xu , , xn+l)' we may write

( )( ) (Th)(xu) ( -l( )
QF Xu ,... , Xn+1 = h(x

o
) - F 7Tu Xu, Xl , X2 , ... , x n+l).

Hence

() (Th)(xu) f (-l() ) d d(EQF) Xu = h() F 7To Xo , Xl , X2 ,... , Xn+l Xl'" Xn+1
Xu J{'+l

(Th)(xo) f ( )( -l( )) d= h() EF 7TU Xu, Xl Xl
X o J ,

1
= h(x

o
) (T(hEF))(xo), by Lemma 3.

Similarly, EQEF = O/h) T(hEF).
Now to prove the main equation, namely

for each n = 0, 1, ... , and for each f E LiJ, (3, m) observe that this equation
is trivial for n = 0. If it is true for n, since QnU/h) depends only on (xu ,... , x n),
then we have that

EQn+1 L = EQQn L = EQEQn L
h h h

= EQ! Pf= l Tn+lf 0
h h

5. POSITIVE CONTRACTIONS

In this section we prove the final result of this note.

THEOREM 5.1. Let T be a positive contraction on L p = Lp(X, 1), m),
1 < P < 00, and assume that there is a function hELp+ so that h > °a.e.
and Ii Th II = II h Ii. Tn converges weakly (if and) only if Li amTi converges
strongly for every uniformly regular matrix (ani)' Then one has weak
lim Tn = lim Li aniP'

The proof will consist of several separate arguments. As shown in Sec
tion 3, the space X can be decomposed into two invariant sets G and
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F = X - G, SO that any invariant function of T has support in G and there
is an invariant function strictly positive a.e. on G. Then the restrictions of
T to LiG, m) and to LiF, m) can be considered separately. For the first
part, the results of Section 3 apply and we obtain the proof immediately.
For the second part, note that hI F is also a function satisfying II TIl! F

II hl F II· We will also observe that there is no loss of generality in replacing
the measure space by a Borel space. Hence, because of the dilation theorem
of the previous section, Thas a dilation to an isometry Q. Since both Tand Q
are positive and since T" converges weakly to zero, it is clear that Qn satisfying

(5.2)

also converges weakly to zero. Hence we need the following theorem to
obtain the desired result.

THEOREM 5.3. Let Q be a positive isometry of Lp(X, .E, m), induced by a
nonsingular equivalence T of X. Then the weak convergence of Qn to zero
implies the strong convergence ofLi aniQi for any matrix (an;) satisfying (2.6).

Proof For each n = 0, 1,2,... let mT-n be the measure transported by
Tn, and let X n be a set with the minimal m-measure so that mT-nX n ==
mT-nX (= mX). We may and will assume that Xo:J Xl :J X 2 :J .... Let
Dn = Xn - Xn- 1 , n = 1,2,... , and A = U:~l Dn , B = n:~l Xn = X-A.
Then it is easy to see that if C is a subset of D n with m(C) > 0, then TC is
essentially a subset of Dn+1 with m(TC) > 0, n = 1,2, , and T~IC is essen-
tially a subset of Dn - 1 with m(T~IC) > 0, n = 2, 3, Similarly if C is a
nonzero subset of B then both TC and T~lC are essentially nonzero subsets
of B. Hence Q maps Lp(Dn , m) onto Lp(Dn+r , m), and it is also an invertible
isometry of LiB, m) onto itself.

Now if fE Lp(B, m), then Li aniQif converges strongly to zero, by the
results of Section 2. If f E Lp(Dn , m) for some n = 1,2,... , then again
Li aniQi converges strongly to zero for the following reason. First, since
Qij's have disjoint supports,

" I p

Ii L aniQ1 jp = L I ani p II Q11j~ = iifll~ L I ani iP
•

'I ,

Hence it is enough to show that limn~w Li a;'i = O. In fact, if
m = sUPn Li I ani I and if M n = SUPi I ani 1, then

which gives the desired result.
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Iff is a general member of L p and E > 0, then we can find fo E Lp(B, m),
fk E LiD, , m), k c= I, ... , K so that II f - L:~oj;,· II < E. Since Ll aniQi L~~ofk
converges strongly to zero, this shows that Li aniQ1also converges strongly
to zero and completes the proof. 0

Finally we prove the following result which shows that for our purposes
Borel spaces are enough.

THEOREM 5.4. Let (X, E, m) be a .finite measure space and let T be a
bounded linear operator on Lp(X, E, m). Given countably many functions
f1 ,f; ,... in Lp(X, E, m), there exists a Borel space (f, f3, f-L) so that Lif, f3, f-L)
is isomorphic to a subspace of Lv(X, E, m) and this subspace is invariant
under T and containsh ,f2 ,.... Furthermore, this isomorphism preserves the
positivity.

Before the proof we note how to apply this theorem to our case. We start
with a positive contraction T on Lp(F, E, m) and assume that there is a
function h' = hl F in Lv, h' > °a.e. and II Th' II = II h' II. If rn converges
weakly to zero, we would like to show that L aniTif converges to zero in
norm for eachfE L p . Therefore, given a fixedfin Lv, we apply Theorem 5.4
to get an invariant subspace of L p containing h' and f and being isomorphic
to the L p space of a Borel measure space. Then the dilation theorem applies
and we proceed as before.

Proof of Theorem 5.4. Let us call a a-algebra separable if it can be
generated by countably many sets. Then we note that countably many
functions on a space always generate a separable a-algebra. In fact, if
gn: X --+ R, n = 1,2,... , then they define a mapping ljJ: X -~ Rae as
VJ(x) == (gl(X), g2(X)",,), and the a-algebra generated by (g1' g2 ,...) is just
ljJ-1f3eo. Here, of course, (Reo, f3eo) is the cartesian product of countably many
copies of the real line R, together with the usual Borel a-algebra. Since f3ex>
is separable, we see that ljJ-1f3ex> is also separable. Also note that the u-algebra
generated by countably many separable a-algebras is itself separable. Now
let '~o be the a-algebra generated by (j~ ,(2 ,...). We define a sequence of
separable a-algebras (.#;;,.~ ,... ) as follows. If 3""n is defined and if it is
generated by a sequence of sets (Fn1 , F n2 ,...), then '~+l is the u-algebra
generated by the countably many functions (TI F ,TI F , ••• ). Also, let

nl . n2

,oF C J) be the a-algebra generated by (.~ , .~ ,... ). Then it is clear that the
subspace of Lp(X, J), m) consisting of 3""-measurable Lv-functions is invariant
under T and contains (/1 ,j; ,... ). If (g1 , g2 ,...) is a sequence of functions
generating 3"" and if ljJ: X --+ Roo is the mapping defined as ljJ(x) =

(gl(X), g2(X)",,), then 1/J is, of course, E-measurable and transports m to
a measure f-L on (Reo, f3OO). Then it is clear that 1/J also defines a positivity
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preserving isomorphism between Lp(X, ff, 111) and Lp(Rm, 13m, fL). Since
(Rm, 13m , fL) is a Borel space this completes the proof. 0

Remark. If in Theorem 5.1 one assumes that (ani) satisfies only (2.6)
instead of (l.l), then weak-lim yn ~~ T only implies

The proof of this is the same as the proof of Theorem 5.1.
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